降维不仅仅是为了数据可视化。它还可以识别高维空间中的关键结构并将它们保存在低维嵌入中来克服“维度诅咒” 本文将介绍一种流行的降维技术Uniform Manifold Approximation and Projection (UMAP)的内部工作原理,并提供一个 Python 示例。 (UMAP) 如何工作的? 分析 UMAP ...
在处理大数据集时,降维是最重要的方面之一,因为它有助于将数据转换为低维,以便我们能够识别一些重要的特征及其属性。它通常用于避免在分析大数据集时产生的维度问题。 当我们在进行数值分析或创建机器学习模型时,处理高维数据可能会很困难。