XDA Developers on MSN
3 automation scripts to replace paid apps from your productivity stack
Nowadays, major productivity apps seem to demand a monthly payment. This "subscription creep" is annoying, but there’s a ...
We show that, compared with surgeon predictions and existing risk-prediction tools, our machine-learning model can enhance ...
NANOG has multifaceted roles in naïve hESCs, orchestrating transcriptional, metabolic, and epigenetic signatures in naïve hESCs, and governing acetyl-CoA synthesis, bivalent metabolism, and redox ...
DataCamp, the leading online learning platform for data and AI skill building, announced today that it has completed the acquisition of Dubai-based Optima, an AI-native learning platform for building ...
What are The Most Popular AI Models in 2025? We Looked at 2.3 Million Chats to Find Out At Overchat AI, we're building a platform that brings text, image, and video models together ? giving everyone ...
The research aim is to develop an intelligent agent for cybersecurity systems capable of detecting abnormal user behavior ...
据Gartner统计,超过70%的网络安全事件源于已知漏洞未及时修复,而攻击者平均只需数小时即可扫描全网并锁定存在漏洞的目标。在这样的背景下,漏洞评估(Vulnerability ...
More and more companies are using AI or planning to use it. However, 95% of projects fail. The reasons for this are ...
在数字化犯罪日益复杂的今天,一起普通的刑事案件可能涉及手机通话记录、社交媒体聊天数据、车载GPS轨迹、云存储文档,甚至智能家居设备的操作日志——证据不再局限于传统的计算机硬盘,而是分散在数十种不同设备与平台中。传统取证工具往往需要针对单一数据源(如仅支持手机或仅支持电脑)单独提取分析,不仅效率低下,更可能导致关键线索因"数据孤岛"而被遗漏。
在如今的 AI 领域,大多数大语言模型在很大程度上仍以「黑箱」方式工作,即使是专业的研究者也难以完全理解它们的内部计算过程。因此,提升模型的透明度有助于分析和解释大语言模型产生幻觉、行为不稳定或在关键场景做出不可靠判断的潜在原因。 就在今天,OpenAI 发布了一项新研究,使用新方法来训练内部机制更易于解释的小型稀疏模型,其神经元之间的连接更少、更简单,从而观察它们的计算过程是否更容易被人理解。
OpenAI的新论文介绍了他们在破解大模型「黑箱」上的一次重要突破,通过训练结构更简单、连接更稀疏的神经网络,为构建既强大又透明的模型提供全新方向。 破解大模型「黑箱」的钥匙找到了? 刚刚,在理解大模型复杂行为的道路上,OpenAI又迈出了关键一步。 他们从自己训练出来的稀疏模型里,发现存在结构小而清晰、既可理解又能完成任务的电路(这里的电路,指神经网络内部一组协同工作的特征与连接模式,是AI可解 ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果